233 research outputs found

    Non-Abelian quantized Hall states of electrons at filling factors 12/5 and 13/5 in the first excited Landau level

    Full text link
    We present results of extensive numerical calculations on the ground state of electrons in the first excited (n=1) Landau level with Coulomb interactions, and including non-zero thickness effects, for filling factors 12/5 and 13/5 in the torus geometry. In a region that includes these experimentally-relevant values, we find that the energy spectrum and the overlaps with the trial states support the previous hypothesis that the system is in the non-Abelian k = 3 liquid phase we introduced in a previous paper.Comment: 5 pages (Revtex4), 7 figure

    Entanglement entropy of the ν=1/2\nu=1/2 composite fermion non-Fermi liquid state

    Full text link
    The so-called ``non-Fermi liquid'' behavior is very common in strongly correlated systems. However, its operational definition in terms of ``what it is not'' is a major obstacle against theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two dimensional electron fluid under magnetic field and filling fraction ν=1/2\nu=1/2, which is believed to be a non-Fermi liquid state. Using the composite fermion (CF) wave-function which captures the ν=1/2\nu=1/2 state very accurately, we compute the second R\'enyi entropy using variational Monte-Carlo technique and an efficient parallel algorithm. We find the entanglement entropy scales as LlogLL\log L with the length of the boundary LL as it does for free fermions, albeit with a pre-factor twice that of the free fermion. We contrast the results against theoretical conjectures and discuss the implications of the results.Comment: 4+ page

    Incompressible paired Hall state, stripe order and the composite fermion liquid phase in half-filled Landau levels

    Full text link
    We consider the two lowest Landau levels at half filling. In the higher Landau level (nu =5/2), we find a first order phase transition separating a compressible striped phase from a paired quantum Hall state, which is identified as the Moore-Read state. The critical point is very near the Coulomb potential and the transition can be driven by increasing the width of the electron layer. We find a much weaker transition (either second order or a crossover) from pairing to the composite fermion Fermi liquid behavior. A very similar picture is obtained for the lowest Landau level but the transition point is not near the Coulomb potential.Comment: Replaced with the published version which has a new title and some other chage

    Quasiholes and fermionic zero modes of paired fractional quantum Hall states: the mechanism for nonabelian statistics

    Full text link
    The quasihole states of several paired states, the Pfaffian, Haldane-Rezayi, and 331 states, which under certain conditions may describe electrons at filling factor ν=1/2\nu=1/2 or 5/2, are studied, analytically and numerically, in the spherical geometry, for the Hamiltonians for which the ground states are known exactly. We also find all the ground states (without quasiparticles) of these systems in the toroidal geometry. In each case, a complete set of linearly-independent functions that are energy eigenstates of zero energy is found explicitly. For fixed positions of the quasiholes, the number of linearly-independent states is 2n12^{n-1} for the Pfaffian, 22n32^{2n-3} for the Haldane-Rezayi state; these degeneracies are needed if these systems are to possess nonabelian statistics, and they agree with predictions based on conformal field theory. The dimensions of the spaces of states for each number of quasiholes agree with numerical results for moderate system sizes. The effects of tunneling and of the Zeeman term are discussed for the 331 and Haldane-Rezayi states, as well as the relation to Laughlin states of electron pairs. A model introduced by Ho, which was supposed to connect the 331 and Pfaffian states, is found to have the same degeneracies of zero-energy states as the 331 state, except at its Pfaffian point where it is much more highly degenerate than either the 331 or the Pfaffian. We introduce a modification of the model which has the degeneracies of the 331 state everywhere including the Pfaffian point; at the latter point, tunneling reduces the degeneracies to those of the Pfaffian state. An experimental difference is pointed out between the Laughlin states of electron pairs and the other paired states, in the current-voltage response when electrons tunnel into the edge. And there's more.Comment: 43 pages, requires RevTeX. The 14 figures and 2 tables are available on request at [email protected] (include mailing address

    Bipartite entanglement entropy in fractional quantum Hall states

    Get PDF
    We present a detailed analysis of bipartite entanglement entropies in fractional quantum Hall (FQH) states, considering both abelian (Laughlin) and non-abelian (Moore-Read) states. We derive upper bounds for the entanglement between two subsets of the particles making up the state. We also consider the entanglement between spatial regions supporting a FQH state. Using the latter, we show how the so-called topological entanglement entropy of a FQH state can be extracted from wavefunctions for a limited number of particles.Comment: 12 pages, 7 figures, small corrections to table III and references adde

    Disorder driven collapse of the mobility gap and transition to an insulator in fractional quantum Hall effect

    Full text link
    We study the nu=1/3 quantum Hall state in presence of the random disorder. We calculate the topologically invariant Chern number, which is the only quantity known at present to unambiguously distinguish between insulating and current carrying states in an interacting system. The mobility gap can be determined numerically this way, which is found to agree with experimental value semiquantitatively. As the disorder strength increases towards a critical value, both the mobility gap and plateau width narrow continuously and ultimately collapse leading to an insulating phase.Comment: 4 pages with 4 figure
    corecore